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Abstract 

Atrial fibrillation (AF) is a troublesome disease often overlooked by more serious myocardial 

infarctions. Up until now, there has been very little or no use of high order spectral techniques in order 

to evaluate the organization of the atrium during AF. Cross-bicoherence algorithm can be used alongside 

a surrogate data threshold in order to determine significant phase coupling interactions, giving rise to an 

organizational metric. This proposed algorithm is used to show rotigaptide, a gap junction coupling drug, 

significantly increases the organization of the atria during episodes of AF due to improvement of cell-to-

cell coupling.  
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I. Introduction 

Motivation 

 The goal of this project is to quantitatively analyze the spatiotemporal organization of the 

electrical activity of the right atrium during atrial fibrillation (AF), in the absence and presence of the 

antiarrhythmic peptide rotigaptide. High-order spectral analysis is used in this effort for ultimately a 

better understanding of AF, for improved targeting of defibrillation techniques and surgical procedures 

such as the maze procedure and catheter ablation.  

Atrial Fibrillation 

 AF is a very prevalent disease in the United States, affecting over 2.2 million patients in 2009 [1].  

The mortality rate for AF in the U.S. was 11,555 in 2009 [1].  The primary concern with AF is that is a 

main contributor in causing strokes. Among patients with AF the risk of ischemic stroke increases by 4 to 

5 fold, and overall AF is believed to be responsible for at least 15 to 20% of all ischemic strokes [1].  AF is 

not usually treated directly, but rather its symptoms are treated. Anti-coagulants are usually prescribed 

in order to prevent the formulation of thrombosis. However on occasion, anti-arrhythmics are 

prescribed or cardioversion is employed for defibrillation.  

 AF occurs when areas of the atrial tissue generate electrical pulses randomly. The presence of 

secondary pacemaker cells overpowers the electrical impulse of the sinoatrial (SA) node, which under 

normal conditions should regulate the pacing of the heart. With AF there is no ordered stimulus to the 

downstream myocardium, and seemingly random patterns occur. The rapid and random electrical 

activity results in inefficient myocardial contraction and decreased ejection fraction. A typical ECG 

during AF is displayed in Fig. 1. 

 

Fig. 1: ECG of Atrial Fibrillation (Lead II) [2] 

 AF only involves the atria, typically the atrioventricular (AV) node is able to reset the electrical 

pulse and the ventricles perform normally. The P-wave in the ECG, corresponding to atrial 

depolarization, is normally not present during AF. The QRS complex is clearly visible in the ECG during AF 

and analysis such as R-R interval or heart rate can be calculated. It has been previously shown that R-R 

interval is irregular during AF, and can be used to aid in differentiating other arrhythmias such as atrial 

flutter [3].  
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Current Treatments 

 The most common effect of atrial fibrillation is the risk of clot formation due to stagnant blood 

in the right atrial or left atrial appendages, which may potentially lead to pulmonary embolism or stroke, 

respectively, among other complications. Because of the large risk of thrombosis, the most common 

forms of treatment are blood thinners and anti-coagulants such as heparin.  

Anti-platelets may be effective at removing some of the dangers involved with AF. However, 

they do not target the disease itself. In addition to other risks, AF leads to decreased ejection fraction 

and inefficient cardiac output. Amiodarone is one of the most popular antiarrhythmic pharmacologic 

currently used to maintain sinus rhythm in long-term AF patients. However, it is associated with a 

recurrence rate of 30% after 1 year of treatment [4]. Iodine is a major component of amiodarone and 

along with its lipophilic nature, it is associated with pulmonary toxicity, thyroid abnormalities, and ocular 

injury [4]. Other pharmacotherapy interventions such as sotalol or propafenome have an abysmal 60% 

recurrence rate [4]. 

Surgical procedures such as the maze procedure [5] and catheter ablation [6] are commonly 

used in order to isolate those parts of the heart (or surrounding tissue) that cause ectopic beats. 

Pulmonary vein isolation (PVI) is the most common, due to the pulmonary vein often causing AF through 

an ectopic beat [7-9]. The maze procedure also isolates the atrial appendages, in order to help eliminate 

the formation of blood clots. The most common  

 An additional treatment used to achieve sinus rhythm from arrhythmias is electrical 

cardioversion or electrical defibrillation. Normally, a shock is delivered at the crest of the R-wave within 

the QRS complex, if present. However, Everett et al have shown that atrial organization plays a vital role 

in successful defibrillation [10] and timing the shock based off organization can lead to even greater 

success [11]. Everett and his group performed 182 shocks between 10 dogs, 95 of the shocks were 

successful in re-achieving sinus rhythm and 87 of the shocks were unsuccessful. Electrogram data was 

collected prior to each shock using a bipolar electrode setup and organization index was calculated using 

a method discussed later. It was found that the mean organization index for the successful shocks was 

0.505 and for unsuccessful shocks was 0.352, with a p-value < 0.0001.  

Higher organization of the atrium leads to higher chances of defibrillation success. A proposed 

drug known as rotigaptide, while not able to suppress AF independently, may increase the organization 

of the atrium and improve the chances of successful cardioversion.   
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Rotigaptide & Connexin43 

 Heart failure and arrhythmias are often associated with decreased gap junction intercellular 

communication. It has been previously reported that antiarrhythmic peptides (AAP) exert 

antiarrhythmic actions by increasing the gap junction intercellular communication between cardiac 

myocytes [12]. A stable AAP analogue known as rotigaptide (“ZP123”, Zealand Pharma, Copenhagen, 

Denmark) has been shown to increase the electrical coupling between ventricular myocytes [13], [14]. 

During myocardium ischemia, the cardiac myocytes have decreased gap junction coupling and undergo 

an increased dispersion of action potential duration and slowed conduction velocity which facilitates 

arrhythmias including but not limited to ventricular and/or atrial tachycardia or fibrillation. Rotigaptide 

increases the conduction velocity by opening gap junctions, while having little to no effect on the 

effective refractory period [15], heart rate, contractility or mean coronary flow as shown in isolated 

rabbit hearts [13].  Rotigaptide augments gap junction conductance improving cell-to-cell coupling at 

both electrical and metabolic levels [13]. Everett et al have shown that with 10 nM treatment of 

rotigaptide, there is a 19% increase in conduction velocity in the atrium during an AF episode. With 100 

nM there was a 42% increase over no treatment, and with 300 nM there was a 51% increase compared 

to no treatment [16]. This conduction velocity increase should lead to a greater organization of the 

atrium. 

 There are several gap junction proteins present in the heart: connexin43 (Cx43) is one of the 

primary connexin isoforms along with Cx40 and Cx45, especially in the atrium [17]. The SA node only 

expresses Cx43 at the border zone with the atrium, while the AV node expresses primarily Cx40 and 

Cx43 with very little Cx45 [17]. Beardslee et al reported in 2000 that electrical uncoupling induced by 

acute ischemia is associated with changes in phosphorylation of Cx43 specifically [18]. In 2006, Axelsen 

et al have shown that rotigaptide greatly lengthens the time to asystole after ischemia, suggesting 

rotigaptide has a role in Cx43 phosphorylation [14]. 
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Current Atrial Organization Methods 

In 1989, Ropella et al were one of the first groups attempting to quantify the atrial organization 

during fibrillation. They attempted to use the magnitude-squared coherence function based off power 

spectral densities (PSD). Although the method failed at providing anything useful concerning atrial 

fibrillation organization, it did prove to be an effective way to differentiate fibrillatory from non-

fibrillatory arrhythmias [19]. The method was based off a 2nd order technique using frequency analysis 

which is useful for analyzing linear and time-invariant (LTI) systems. However, AF is a time-varying, non-

linear process.  

In 1995, Botteron and Smith were one of the first groups to successfully develop a method of 

quantifying the atrial organization during fibrillation: using harmonic analysis [20]. They used an indirect 

way of observing changes in phase over time by comparing the area under the dominant frequency and 

its harmonics with that of the entire spectral area up until that point. When Botteron and Smith used 

their method of measuring organization index, they found the average organization was between 0.32 

and 0.54 for AF compared with 0.91 and 0.95 for sinus rhythm [21]. Although the method proved to be 

somewhat reliable for determining organization, when Everett and his group used the method to check 

for differentiation in organization due to rotigaptide treatment, no discernment could be made 

[unpublished]. Botteron and Smith’s method is still reliant on the PSD, and does not accurately 

represent phase relations and non-linear relations between signals. Normally, the PSD discards phase 

information. For example, the PSD of a sine wave is the same as a cosine wave at the same frequency. If 

the only difference between signals is the phase, that difference will not be detectable by using PSD 

alone. 

Literature is devoid of a more elegant method of measuring the organization of the atrium: 

using cross-bispectrum technique in order to properly analyze the non-linear interactions. By 

implementing cross-bispectrum over time the time-varying aspect can be addressed as well.  
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Cross-Bispectrum Techniques 

 The magnitude-squared coherence function and cross-PSD are variants of a method in order to 

determine linear interactions, or frequency coupling, between two signals. They are able to find 

coherence or similarity in frequency spectral content between two inputs. The cross-bispectrum is a 3rd 

order technique suited to detecting interaction between two signals  involving both linear and non-

linear interaction [22]. Non-linear interactions, more specifically: quadratic phase coupling (QPC) 

between two signals, implies that not only two signals are coherent with respect to a particular 

frequency, but that the frequencies are in phase. The cross-bispectrum between two signals is defined 

as the triple product of the third order cumulants of two signals:  

                         
         

Eq. 1: Cross-bispectrum between two signals 

 The cross-bispectrum is sensitive to frequency and/or phase coupling between signals; both 

linear and non-linear interactions contribute to the magnitude of the output. Using the cross-bispectrum 

alone, discernment cannot be made between phase and frequency coupling.  

 By observing the phase coupling between signals, taken from different regions of the atria, it is 

believe that by quantifying these interactions they would lead to a more efficient and accurate metric of 

determining atrial organization. Using this improved organizational metric, it can then be used to 

determine if there is an organizational difference between no treatment and varying treatments of 

rotigaptide doses.   
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The following simulated data was analyzed with the cross-bispectrum algorithm in order to 

evaluate its efficacy. Two signals with pre-determined frequency and phase coupling were generated 

using a method proposed by Siu and Chon [23] described in Eq. 2 (code in Appendix A). 

                          

                          

                          

                          

                             

                            

Eq. 2: Simulated signals with pre-determined coupling 

 …where fx(1)= fy(1)=0.03 Hz, fx(2)= fy(2)=0.12 Hz, n=4096 samples, Δ=1 sec, and ϕ=rand(0…2π). 
 
 The two signals x(n) and y(n) have precisely the same frequency content as shown in the PSD 

generated by an FFT in Fig. 2. 

  

 

Fig. 2: a) PSD for x(n), left and b) y(n), right  

Peaks arise at both 0.03 Hz and 0.12 Hz, in addition to the frequency coupled harmonic at 0.15 

Hz (f1+f2). Frequency coupling arises from the composite sum from the first two terms in x(n) and y(n). 

Despite the similarity in frequency content apparent in the PSD, the phase content is quite different 

between these two signals due to unidirectional phase coupling from y(n) to x(n) arisen from the 3rd 

term product in y(n). In order to evaluate the phase coupling, cross-bispectrum is used. The cross-

bispectrum between signal 1 and signal 2 gives rise to the following image in Fig. 3. 
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Fig. 3: Cross-bispectrum between two signals with known phase coupling 

A significant peak of magnitude nearly 25 arises at the intersection of 0.03 and 0.12 Hz, 

indicating interaction between the two signals. However, since the cross-bispectrum is non-specific it is 

believed this peak is due to both non-linear and linear interactions (phase and frequency coupling). If 

the non-linear interactions are destroyed (using a surrogate method described in the next section), the 

peak is severely suppressed to a magnitude of just fewer than 4, albeit still present when there is only 

frequency coupling (Fig. 4). The cross-bispectrum is not normalized, and the amplitude values are of 

relative magnitude. 

 

Fig. 4: Cross-bispectrum between two signals with only frequency coupling 
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A normalized cross-bispectrum can be performed as the cross-bicoherence index, where the 

result of the cross-bispectrum is divided by the products of the power spectra of the two signals 

evaluated at each frequency and the composite frequency. The cross-bicoherence is described by Siu 

and Chon [23] and calculated as in Eq. 3. The cross-bicoherence is more sensitive than the cross-

bispectrum: it requires both linear and non-linear interactions to be present. Because of normalization, 

the amplitude is also presented with a value between 0 and 1. 

              
            

 

                     
 

Eq. 3: Cross-bicoherence index between two signals 

  The cross-bicoherence was evaluated on the two signals x(n) and y(n) as previously described 

and result is shown in Fig. 5. The amplitude of the peak is slightly greater than 0.9, indicating significant 

linear and non-linear interaction between the two signals. 

 

Fig. 5: Cross-bicoherence index between two signals with known frequency and phase coupling. 

 If the cross-bicoherence is ran again between the two signals when there are only linear 

interactions present, no significant peaks arise. However, a baseline floor with minimal linear 

interactions remains (Fig. 6). 



www.manaraa.com

9 
 

 

Fig. 6: Cross-bicoherence between two signals with only frequency coupling 

 Although the cross-bicoherence requires both linear and non-linear interactions to be present 

for significant peaks, there is still a portion of amplitude caused by linear interactions alone. For the 

scope of this project, quadratic phase coupling must be solely assessed.  

 In order to determine statistical significance of the cross-bicoherence result, and to eliminate 

magnitude due to linear interactions, a threshold must be implemented. Shils et al proposed a √3/√N 

threshold where N is the number of segments [24], however, this threshold is rather arbitrary and does 

not provide statistical significance on a frequency to frequency basis. It has been shown to erroneously 

reject true amplitudes in certain conditions [23]. A surrogate data threshold technique can be 

implemented to achieve higher specificity and sensitivity used in conjunction with cross-bicoherence. 

Surrogate Data 

A surrogate time-series can be generated in which the surrogate data has the same linear 

characteristics of the original signal, but with randomized phase. The iteratively refined surrogate data 

technique (IRSDT) was used as described by Schreiber and Schmitz [25]. By definition, the PSD of a signal 

should be identical to the PSD of its own surrogate data. The IRSDT method of producing surrogate data 

is even more effective because it iteratively corrects for amplitude deviations in the PSD, maintaining 

the correct distribution of the signal. A time-series signal including two known sinusoids of frequencies 

0.03 Hz and 0.12 Hz is shown in Fig. 7 with signal length of 4096 data points.  
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Fig. 7: Epoch of time series of two known sinusoids 

 The PSD for the signal was computed using an FFT and is shown in Fig. 8. The PSD presents the 

expected energy peaks at 0.03 Hz and 0.12 Hz. 

 

Fig. 8: PSD of random signal with two known frequencies 

 Surrogate data for the signal was generated using the algorithm by Gautama shown in Appendix 

F. As expected, when the PSD is computed for the surrogate data, a nearly identical PSD arises, as shown 

in Fig. 9. The PSD is a 2nd order technique, and discards any phase related data (the PSD for a sine and 

cosine wave of the same frequency are identical). Not only is the frequency content identical, but the 

spectral energy (amplitude) are equivalent as well, due to the IRSDT approach. 
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Fig. 9: PSD of signal’s surrogate data 

 Using surrogate data the phase coupling between two signals can be destroyed, making it 

possible to find the linear interactions between two signals. Subtracting linear interactions from general 

interactions is an effective way to determine non-linear interactions: e.g. surrogate data in conjunction 

with cross-bicoherence between two signals can detect quadratic phase coupling. 

Cross-bicoherence with Surrogate Data Threshold 

 Cross-bicoherence is an effective technique to determine quadratic phase coupling (QPC) 

between two signals. This technique of determining QPC can be performed more specifically by using a 

statistically determined threshold by surrogate data described by Siu et al [22, 23]. Using this method, 

only non-linear interaction will contribute to the final result and linear interactions are almost 

completely attenuated as determined by an iterative statistical approach.  

To perform this strategy between two input signals: the cross-bicoherence is first run between 

arbitrary signals 1 and 2.  Next, 100 iterations of surrogate data are generated for signal 1. The cross-

bicoherence is run between each and every iteration of signal 1 surrogates vs. the original signal 2. The 

result of each of these cross-bicoherence values are seemingly random, but after all 100 iterations a 

pattern begins to emerge representing the cross-bicoherence due to linear interactions of signal 1 and 

signal 2. The surrogate data threshold is determined by the mean plus two standard deviations of the 

amplitude at each frequency combination, in order to define statistical significance. Siu et al confirmed 

the surrogate data realizations come from a normally distributed population using a Kolmogorov-

Smirnov goodness of fit test, justifying the use of descriptive statistics mean and standard deviation 

which require normality [23]. Mean plus two standard deviations provides 95% confidence, for the 

upper limit of the normal distribution. 

 If this method is used on the two simulated signals with frequency and phase coupling 

previously described, the result will emerge with a peak due to only non-linear interaction (Fig. 10). The 

result looks very similar to that in Fig. 5 when the cross-bicoherence was used alone, although 

amplitude is slightly less (roughly 0.8 vs. 0.9) due to the subtraction of the linear interaction, given by 

the surrogate data statistical threshold (approximately 0.1 at the desired frequency location).  The 
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amplitude of a peak from cross-bicoherence alone has both linear and non-linear contribution. The 

surrogate data threshold will eliminate the linear contribution, providing an efficient way to evaluate 

non-linear interactions alone. 

 

 

Fig. 10: Cross-bicoherence after surrogate data threshold 

Of course if the method of cross-bicoherence with surrogate data threshold (CBicS) is used on 

two signals which are only frequency coupled and do not possess phase coupling, there will be no 

significant results as shown in Fig. 11. 

 

Fig. 11: CBicS between two signals with only frequency coupling 

 Although the result is not flat, there are no significant peaks. In the absence of phase coupling, 

the cross-bicoherence with surrogate method will not provide any results, even when there is frequency 

coupling. Surprisingly, this result between two signals with no phase coupling is not zero. Thus, an 

additional global cutoff value must be implemented. This global cutoff can be carefully selected in order 

to discard any floor measurements, but leave clearly prominent peaks. 
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 The cross-bicoherence gives a normalized coupling magnitude between the values of 0 and 1. If 

the magnitude at a particular combination was already low, say 0.3, and the surrogate threshold for that 

value was only 0.1, then the coupling magnitude would still be greater than 0. This further exemplifies 

the need for a global cutoff, to eliminate any low magnitude interactions. A global surrogate threshold 

should not be used, because a surrogate threshold is determined at every frequency combination 

unique for each interaction between the two signals.  

Robustness of the Cross-bicoherence with Surrogate data 

It has previously been shown that given the choice between cross-bicoherence, cross-

bispectrum alone, or either option with surrogate data, that it is most effective to use cross-bicoherence 

with surrogate data (CBicS) [23]. This method is the least susceptible to low SNR and does not 

superfluously identify linear interactions when there is a lack of non-linear interaction. Cross-

bicoherence index is also preferred to the cross-bispectrum because it provides more meaningful 

amplitude, normalized from 0 to 1. Cross-bicoherence index also is less susceptible to variability in 

segment length when compared to the cross-bispectrum [23]. Following the notion CBicS is the most 

efficient cross-bispectral method, it is tested in the following section. 

CBicS was performed between two signals generated with frequency and phase coupling as in 

Appendix A with a segment length of 128. Additive, Gaussian white noise was added to each of the 

signals to simulate varying levels of SNR. The algorithm was performed at each 1 dB step from -30 to +30 

dB SNR and detected frequencies are shown in Fig. 12 and Fig. 13. 

 

Fig. 12: Effect of SNR on CBicS (f1) 
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Fig. 13: Effect of SNR on CBicS (f2) 

 The correct detected frequencies should be 0.03 Hz and 0.12 Hz for f1 and f2 respectively. The 

frequencies were detected correctly for an SNR as low as -25 dB. Further evaluation of the robustness of 

the CBicS was determined by Siu and Chon, and in fact they claim the method can be accurate for SNR as 

low as even -30 dB [23]. They evaluated the effect that signal length can have on the various methods 

(cross-bicoherence alone, cross-bicoherence with surrogate threshold, and cross-bispectrum with 

surrogate threshold). They also evaluated the requirement of percentage of coupling between two 

signals. The cross-bicoherence with surrogate threshold proved to be the most accurate and sensitive of 

the three methods in all three tests: varying noise levels, signal length, and percentage of coupling [23].  

Example: Surrogate-Data Threshold with Cross-Bicoherence 

 Throughout the next section, the process and plots will be shown for an iteration of CBicS 

between two different cardiac electrograms and will help solidify the necessity of a surrogate-data 

threshold for use with cross-bicoherence. 

First, the cross-bispectrum is taken between the two channels. For this example, the 991_82_RB 

(Dog 4, 10 nM treatment, epoch at 20 minutes) dataset was randomly selected, between channels 42 

and 68 as signal 1 and 2 respectively. Both channels contain 6.25 Hz content which is phase coupled 

between the two. 
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Fig. 14: Cross-bispectrum peaks 

The cross-bispectrum found several significant peaks, a few which are illustrated in the first 

quadrant above. The highest peak was found at 11.7 Hz and 6.25 Hz. The desired peak is also visible at 

6.25 Hz and 6.25 Hz, however, the magnitude of the peak is slightly lower, and is normally not easily 

recognized. Regardless, the locations of all peaks found from the cross-bispectrum are noted, and used 

later in verification. 

 Next, the cross-bicoherence is run between the two signals. (Fig. 15) There are several more 

peaks identified, including both non-linear and linear interactions. The ability to discern between the 

two is not yet possible without the introduction of surrogate data. If simply the maximum peak is taken, 

the strongest bicoherency was found between frequencies 6.25 Hz and 12.5 Hz. These frequencies are 

harmonics: they must have frequency and phase coupling components. However, with cross-

bicoherence alone there is no way to determine the contribution from each. Thus there is a requirement 

for CBicS. 
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Fig. 15: Cross-bicoherence peaks 

 100 different iterations of surrogate data is generated for signal 1. The surrogate data contains 

all of the same linear characteristics of signal 1, but with randomized phase. The cross-bicoherence is 

run between an iteration of signal 1 surrogate data with signal 2. The result of one run is shown in Fig. 

16. 

 

 

Fig. 16: Cross-bicoherence between Signal 1 Surrogates and Signal 2 

 Clearly after iteration, the results look random and no visible peaks appear. However, after all 

100 iterations of signal 1 surrogate data are cross-bicoherenced with signal 2, patterns begin to emerge 

and peaks are identified for linear interactions only. The mean of the amplitudes is taken at each 

frequency, plus two standard deviations. The visible peaks are shown in Fig. 17, representing locations 

of linear interaction between signal 1 and signal 2. 
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Fig. 17: Cross-bicoherence with Surrogates Statistical Averaging 

 If the linear interactions are subtracted from the raw cross-bicoherence, a single peak occurs in 

the first quadrant as shown in Fig. 18. To improve specificity, only the locations at which there were 

peaks found in the cross-bispectrum are used. 

 

Fig. 18: Cross-Bicoherence after Surrogate Threshold 

 The peak shown in Fig. 18 represents the primary location at which two frequencies are phase 

coupled between signal 1 and 2. The peak is at 6.25 Hz and 6.25 Hz with amplitude of 0.8974 after 

threshold subtraction, with a true bicoherency peak of 0.9918. Cross-bicoherence using a surrogate 

threshold is the most specific method at identifying interaction between two phase coupled. If used 

with the absence of a surrogate data threshold, cross-bicoherence will give rise to peaks with amplitude 

contributed by both linear and non-linear interaction. If only quadratic phase coupling interactions are 

desired, it is absolutely necessary to employ a statistical surrogate time-series threshold used in 

conjunction with cross-bicoherence. 
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II. Methods 

Data Collection 

The data presented was collected from four dogs under the care of Thomas Everett et al under 

Jeffery Olgin’s group at University of California: Berkeley (Berkeley, CA). First, congestive heart failure 

(CHF) was induced by rapid ventricular pacing via a lead in the right ventricle at 240 BPM (4 Hz) for four 

weeks. The CHF model has been previously shown to create atrial conduction abnormalities  detected by 

epicardial mapping [26]. Episodes of AF were initiated using rapid atrial burst pacing from the left atrium 

using the following parameters: cycle length of 50 ms (20 Hz), pulse width of 9.9 ms, and output of 9.9 

mA. The AF episodes were recorded with epicardial surface electrode plaques first with no treatment, 

and after with 10 nM and later 300 nM doses of rotigaptide treatment, taken at varying intervals 

described in Appendix G. 

 The 90 electrode epicardial surface plaque was placed on the right atrium spanning the right 

atrial Bachman’s bundle (RBB) spanning inferiorly to the medial right atrial appendage (MRAA). The 

electrode configuration is shown in Fig. 19. The data was collected at a sampling rate of 2000 Hz for 

epochs up to 50 seconds in length. 

 

 

Fig. 19: Electrode plaque configuration for superior RA 

 

  

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 

66 67 68 69 70 

71 72 73 74 75 

76 77 78 79 

80 81 82 83 

84 85 86 87 

88 89 90 



www.manaraa.com

19 
 

Cross-bicoherence with Surrogate Data Algorithm 

Materials 

 A 64-bit Windows environment running 64-bit MATLAB 7.11.0.584 (2010b) was used on a dual 

Intel Xeon (X5680) CPU platform. The original electrode plaque for the superior right atria (SRA) 

contained 90 channels. MATLAB supports up to eight threads per algorithm, so for symmetric data 

distribution the number of channels must be factorable by eight. For multi-threading purposes the last 

two electrodes were discarded for a total of 88. The data is split into eight even portions and is 

computed in parallel. The average computation time is between 8 and 12 hours for an 88 channel 

dataset, 50 seconds long, with a down-sampled rate of 100 Hz. The recommended data length for cross-

bicoherence is about 4096 samples; therefore the length of 5000 provided ample information for the 

calculation. The algorithm was run between every possible permutation of the 88 channels, except the 

case where an electrode would be analyzed against itself, for a total of 7,656 runs per dataset (88x88-

88). 

Process 

 The data is first down-sampled using a built-in MATLAB function: decimate. It is recommended 

to avoid down-sampling greater than a factor of 13, so the data is down-sampled in two steps: once by a 

factor of 10, and then by a factor of 2, for a total factor of 20. The decimate function automatically 

implements a low pass Chebyshev Type I filter with cutoff frequency of 80 Hz for the decimation down 

to 200 Hz and cutoff frequency of 40 Hz before decimating to 100 Hz. The 8th order filter is implemented 

in both forward and reverse directions for zero-phase implementation, doubling the order to 16. Initial 

sampling rate was 2000 Hz, after decimation it is 100 Hz. The down-sampled data is then divided into 

eight slices. 

After the data is evenly divided, a CPU thread is assigned to each slice using the single-process, 

multiple-data functionality (spmd) in MATLAB. The main program call can be found in Appendix B. The 

main algorithm (see flow chart in Appendix N part 1) begins with the calculation of a cross-bispectrum 

using a slightly modified version of bispecdx.m (Appendix C) from the High-Order Spectral Analysis 

(HOSA) Toolbox by Swami [27]. The cross-bispectrum was modified to incorporate a different sampling 

rate and also to disable any plotting features included. The following parameters were used for the 

cross-bispectrum: an FFT length (NFFT) of 128 samples, segment length of 128 samples (optimally it is 

equal to NFFT), window size of 5, and 50% overlap between segments. Given the sampling frequency of 

100 Hz and defined NFFT, the frequency resolution is 0.78125 Hz. NFFT is best chosen as a power of 2 

for maximum efficiency, although if the next step of 256 is chosen, the time to compute the algorithm 

roughly doubles. The choice of 128 samples gives a fair balance between computation time and 

frequency resolution. The window length of five is the default value and is used as the length of the side 

of the Rao-Gabr optimal window. 
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The cross-bispectrum is the most general form of coupling detection, thus maximum numbers of 

peaks appear. The peaks are checked to ensure they are the local maxima, and the location of the peaks 

are noted for further reference henceforth referred to as the significant peaks. 

 Next the cross-bicoherence is run between the two signals. Similarly a modified version of the 

bicoherx.m ([27]) is used with sampling rate input modification and disabled plotting (Appendix D). The 

cross-bicoherence was used with the same parameters as mentioned above for the cross-bispectrum, 

with the only difference being that of the window. The cross-bicoherence algorithm uses a Hanning 

window, and thus the empty set ([]) variable was used for the default value by the script. The cross-

bicoherence result data is extracted only at the significant peaks that have been previously determined. 

Surrogate data is generated (Appendix E) for signal 1 using a version of generate_surrogate.m (Appendix 

F) to collect 100 different iterations of surrogate data all with randomized phase. The cross-bicoherence 

is performed between every iteration of signal 1 surrogate data with signal 2. The result of the cross-

bicoherence is the linear interaction between signal 1 and 2, all non-linear characteristics are 

suppressed. Every permutation of channels is performed for the overall algorithm: every electrode has a 

chance at being signal 1 since the cross-bispectral techniques are unidirectional. There is no advantage 

to generating surrogate data for signal 2. The phase is randomized in signal 1; therefore non-linear 

interactions are already destroyed.  

 The threshold value is then found at each of the locations of the significant peaks by taking the 

mean plus two standard deviations. Global maximum peak was not used; rather each frequency location 

(at significant peak) had its own threshold value because of fundamental amplitude variation at 

different frequencies from the cross-bicoherence. 

 Lastly, the values from the original cross-bicoherence output between signal 1 and 2 are 

subtracted by the corresponding surrogate data statistical threshold values. The number of significant 

peaks from the cross-bispectrum should always be equal to or greater than the number of significant 

peaks found after the cross-bicoherence with surrogate data. Because the threshold from linear 

interactions is subtracted from the output of the original cross-bicoherence, any value greater than 0 

suggests there are non-linear interactions. However, due to the sheer large number of significant 

interactions even after threshold implementation, only amplitudes relatively high represent significant 

interaction. Despite the statistical surrogate data threshold, an additional threshold must be user-

defined for practical analytical purposes.  The amplitude can take on any value from 0 to 1, and 

sometimes even greater than 1 in high correlation scenarios. There is no upper limit to the result as 

mentioned by Hinich et al [28]. Previously, global surrogate data threshold has been used [23]. However, 

the cross-bicoherence weighs the amplitude differently for different frequency combinations due to the 

natural inverse relationship between amplitude and frequency when traversing into the frequency 

domain. Elgar & Guza have previously reported this phenomena in 1988 when using the bicoherence 

function [29]. Therefore, it is more accurate to use varying surrogate data threshold values for each 

individual frequency location. However if there is low initial output, and the surrogate data threshold is 

also low for that frequency combination, a secondary, greater threshold must be used in order to 

suppress those insignificant interactions rather than taking any result above 0 even after surrogate 
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threshold subtraction. Threshold values after surrogate threshold subtraction used for analysis were 0.5 

and 0.8, for example. 

The final result shows the two frequencies found to be phase matched between the two signals. 

By definition, the frequencies which are phase coupled will always be either the same value, or a 

harmonic of each other. The resulting cross-bicoherence amplitude is after threshold subtraction. 

Method of Analysis 

In order to quantify the organization of the atrium during AF, time-frequency analysis as well as 

the implementation of an organization index was used. 

Time-frequency analysis was first used in order to determine dominant coupled frequencies (DCFs) as 

determined from the CBicS output using code in  
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Appendix H. An ideal “low-pass filter” is implemented with a cutoff value of 20 Hz in order to 

prevent the ventricular pacing frequency from being reported as the DCF. For some of the episodes, the 

pacing frequency completely masked the other frequencies of interest, as shown in Fig. 20. It is 

important to note that the DCF is almost always vastly different from the true DF found from the PSD, 

because the DCFs found from CBicS are phase coupled and often represent only relatively low spectral 

energy throughout the PSD. 

 

Fig. 20: Dominance of pacing frequency 

Organization index was implemented at specific frequencies. Dominant and significant 

frequencies were determined using pseudo-time-varying cross-bicoherence algorithm (along with 

surrogate data threshold). Background frequency content was analyzed by summation of coupling 

incidence. The program found in Appendix I determines which electrograms are in synchronization, as 

determined by the DCF and its harmonics (also see flowchart in Appendix N, part 2). The cross-

bicoherence organization index (CBOI) was found by dividing the number of channels phase coupled at 

the desired frequency or its harmonics, divided by the total number of channels as shown in Eq. 4. 

      
                           

                
 

Eq. 4: Cross-Bicoherence Organization Index 

  

 An alternative method was also used, more broad and less specific, but more widely applicable 

for all mechanisms of AF even when a DCF is not determined. 

      
                               

                
 

Eq. 5: Cross-Bicoherence Organization Index 2 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Frequency (Hz)

N
u
m

b
e
r 

o
f 

In
te

ra
c
ti
o
n
s



www.manaraa.com

23 
 

Statistical Analysis 

Statistical significance was determined by the distribution free Wilcoxon Rank-sum test (also 

known as Mann-Whitney Wilcoxon test). The results that were analyzed do not follow normal 

distribution as confirmed by both Shapiro-Wilks and Kolmogorov-Smirnov tests, so a non-parametric 

test was found appropriate for comparisons.  
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III. Results 

Time-Varying Cross-Bicoherence Analysis 

The first step in analysis is to sort through the amplitude output of the cross-bicoherence with 

surrogates (CBicS) and determine an appropriate threshold for significance. Pseudo time-varying cross-

bicoherence was performed in order to view the coupled frequency content over time by using the 

output of the CBicS with sliding time windows (with no overlap, because the epochs are separate). First, 

a global 0.5 amplitude threshold was implemented (after surrogate threshold subtraction) shown in Fig. 

21. 

  

  
 

Fig. 21: Time-varying CBicS output for Dogs 1-4 with 0.5 amplitude threshold 

 Dark blue represents none or low coupled frequency content. Dark red shows the most common 

frequencies involved with phase coupling (≥ 176 instances). The time axis represents the order of 

collected electrograms as described in Appendix G (taken every 1-5 minutes on average). From left to 

right: baseline AF, 10 nM rotigaptide treatment, and 300 nM treatment (separated by white lines). It 

was not possible to implement a true time-varying cross-bicoherence algorithm because of the 

irregularity of the acquisition of data. Recordings were not always taken as regular intervals, due to 

unsustainability of the AF episode. The only Dog which was able to sustain all 3 AF episodes (baseline, 

10nM, 300nM) without interruption was Dog 1. Each dataset for Dog 1 was collected at 5 minute 

intervals from 0-30 minutes. 
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 Even after surrogate threshold subtraction and 0.5, there is still a large amount of coupling 

present in the signals. To further isolate the more significant interactions, an additional threshold of 0.8 

was implemented. The results of the time-varying cross-bicoherence analysis after the 0.8 amplitude 

threshold are shown in the following figure. 

  

  
 
 

Fig. 22: Time-varying CBicS output for Dogs 1-4 with 0.8 amplitude threshold  

By using amplitude of 0.8, the significant frequency content is much more visible. For Dog 1, 

there was spectral content in the 6-14 Hz band at baseline, most of which is attenuated after the 

administration of rotigaptide. There is a consistent frequency of 4.6875 Hz over time, becoming more 

apparent in 10 nM, and even more apparent in 300 nM. This frequency for Dog 1 is evaluated later. Dog 

2 has little frequency content at baseline, and with the introduction of the drug begins to show more 

coupled spectral energy across nearly the entire bandwidth. 1.5625 Hz was the most consistent 

frequency across time, though not as prominent as the respective DCFs in Dog 1 and 4. Dog 3 had 

spectral content across the entire band for a few baseline datasets and the first 300 nM dataset, but no 

consistent frequencies over time. Dog 4 had a consistent frequency of 6.25 Hz over time. Additionally, 

Dog 4 had spectral power in many bands for some of the baseline datasets.  

The dominant coupled frequency for each dog is shown in Table 1 with error up to ± 0.78125 

(Frequency resolution).  Dog 2 and 3 did not have a single dominant frequency across all epochs. 
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Table 1: Time-varying CBicS determined Dominant Coupled Frequencies 

Dog DCF (Hz)  

1 4.6875 

2 N/A 

3 N/A 

4 6.2500 
 

The dominant frequencies found from time-varying cross-bicoherence analysis were used as a 

foundation for the implementation of a more stringent form of quantifying organization during the AF 

episodes: an organization index. 

The characterization of background frequencies (all those except the DCF) is also provided in 

Table 2. An interaction involves channel to channel coupling with an amplitude greater than 0.8. The 

effect from no treatment to treatment is noted.  

Table 2: Total number of interactions involving background frequencies 

Dog Baseline 10 nM 300 nM Effect 

1 39,877 1,703 1,908 Suppression 

2 10,843 28,375 28,719 Additive 

3 11,484 2,449 3,737 Suppression 

4 21,874 5,626 667 Suppression 
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Organization Index 

For Dog 1, the previously reported frequency of 4.6875 Hz was checked for synchronization. With an 

amplitude threshold of 0.8, the mean ± SD of organization is depicted for Dog 1 in Fig. 23 and given in 

Table 3. 

 

Fig. 23: Organization Index at 4.6875 Hz for Dog 1 

 A rank-sum test between the AF control and 10nM treatment reveals a p-value of 0.0979. 

However, if the outlier is removed (as determined by Q1-1.5*IQR) the p-value decreases to 0.0280. If AF 

control is compared to 300nM, the p-value is 0.0460. 10nM vs. 300nM treatment reveals a 0.2145 p-

value. 

 A similar procedure was followed for Dog 4, but with the frequency of 6.25 Hz as determined 

from the time-frequency analysis. The mean ± SD of organization for Dog 4 is given in Table 3 and 

boxplots available in Fig. 24 . Rank-sum between AF control and 10nM, AF control and 300nM, and 

10nM vs. 300nM all gave p-values > 0.05. 
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Fig. 24: Organization Index at 6.25 Hz for Dog 4 

 Although not as dominate as the respective DCFs in Dog 1 and 4, in Dog 2 there was moderate 

consistency at 1.5625 Hz. Synchronization was checked and reported in Table 3. There was very little 

1.5625 Hz content in Dog 2 initially, but after the introduction of the drug the frequency began to 

emerge, albeit at not very high organization (Fig. 25). 

 

Fig. 25: Organization Index at 1.5625 Hz for Dog 2 

 The rank-sum test gave a p-value of 0.0173 when comparing AF control to 10nM for Dog 2 at 

1.5625 Hz. Although 300nM had two datasets with greater than 0.9 organization, it also had two 

datasets with 0 organization at 1.5625 Hz, leading to a >0.05 p-value when compared to either the AF 

control and 10nM sets. 
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Table 3: Mean Organization Index of Right Atrium (Mean ± SD) with Set Frequency 

Dog AF Control 10 nM 300 nM Freq. (Hz) 

1 0.24 ± 0.3 0.52 ± 0.2 0.49 ± 0.2 4.6875 

2 0.05 ± 0.1 0.63 ± 0.4 0.48 ± 0.6 1.5625 

4 0.45 ± 0.4 0.73 ± 0.2 0.68 ± 0.2 6.2500 
 

 For further evaluation, the global amplitude threshold was dropped back down to 0.5 in order to 

allow more coupled frequency content for analysis. Almost all of the sets have shown at least some 

degree of organization when looking at 3.90625 Hz with an amplitude threshold of 0.5, except Dog 2 AF 

control. If the threshold is increased to 0.8, almost all of the 3.90625 Hz is suppressed. The hearts were 

previously paced to 240 BPM (4 Hz) for four weeks in order to induce CHF, and it is believed this 

frequency is still intrinsically present in the cells. There was no significant difference among treatment 

groups other than Dog 2 AF control vs. 10nM (p-value 0.0300) and 300nM (p-value 0.0364). 

Table 4: Mean Organization Index of Right Atrium (Mean ± SD) at 3.90625 

Dog AF Control 10 nM 300 nM 

1 0.60 ± 0.2 0.73 ± 0.1 0.67 ± 0.2 

2 0.00 ± 0 0.17 ± 0.2 0.23 ± 0.2 

3 0.43 ± 0.2  0.41 ± 0.4 0.58 ± 0.3 

4 0.15 ± 0.2 0.04 ± 0.1 0.26 ± 0.1 
  

Dog 3, which did not show any consistent frequency content over time with the 0.8 threshold, 

showed a consistent organization of mean greater than 40% for both no treatment and treatment at 

3.90625 Hz with a threshold of 0.5.  

 Rather than look at organization for specific frequencies, the organization can also be 

determined by simply counting the number of channels that possess amplitude greater than a certain 

value, say 0.8. This method of determining the organization index gives an overall picture of how 

organized the atrium is under certain time and treatment conditions, regardless of the frequency 

prominence and/or suppression caused by treatment (Table 5). The boxplots showing the organization 

index for the consolidated epochs by treatment groups are shown in (Fig. 26). The consolidation includes 

epoch recordings from sustained AF episodes as well as individual AF episodes (where there is only one 

epoch from a particular AF episode).  Refer to Appendix G for the summary of acquired data. 

Table 5: Organization Index of RA with no specified frequency with 0.8 amplitude cutoff (Mean ± SD) 

Dog Control 10 nM 300 nM 

1 0.81 ± 0.2 0.88 ± 0.1 0.98 ± 0.02 

2 0.60 ± 0.3 0.98 ± 0.04 1.00 ± 0.006 

3 0.71 ± 0.4 0.85 ± 0.1 0.63 ± 0.2 

4 0.93 ± 0.1 0.79 ± 0.1 0.74 ± 0.2 
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Fig. 26: Boxplot of average organization index for Dogs 1-4 (no specified frequency) 

  

 A rank-sum test was run between every possible combination (Table 6): 

Table 6: Summary of Rank-sum results for organization indices (P-values) 

Dog Control vs. 10 nM Control vs. 300 nM 10 nM vs. 300 nM 

1 0.0239* 0.0769 0.1265 

2 0.0047* 0.0081* 0.6670 

3 1.000 0.1364 0.0167* 

4 0.3772 0.5091 0.2051 
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IV. Discussion 

Dominant Frequency Prominence & Secondary Frequency Suppression 

The frequency content of Dogs 1 and 4 stabilized over time with the introduction of rotigaptide 

treatment. Not only did 4.6875 Hz and 6.25 Hz have a consistent presence over the time-varying cross-

bicoherence analysis, but with the introduction of the drug other secondary frequency content was 

suppressed as well as shown in Table 2. Dog 2 had nearly no coupled 1.5625 Hz content at all, and with 

the introduction of the drug the frequency was introduced; although rather than observing secondary 

frequency suppression, new frequencies were introduced with the treatment as well. With Dog 3, no 

consistent frequency was observed over time with the 0.8 amplitude threshold. However, secondary 

frequency suppression was also observed as in Dog 1 and Dog 2. 

Organization Index 

The average organization is in contrast to the reported organization index determined by 

Everett et al of 0.3 for AF control and for both treatment levels. They used a vastly different method to 

determine an organization index, by observing the alteration of frequency over time using harmonic 

analysis developed by Botteron and Smith[20]. Everett et al could not show any significant difference in 

organization between control and rotigaptide treatments in the right atrium during AF [unpublished].  

Not all of the rank-sums show a significant difference between control and treatment groups: 

the boxplots in Fig. 26 and increasing mean organization in Table 5 show the organizational 

improvement. The organization of the right atrium during AF may already have some inherent 

organization, however with great variance. If the organization is already high (Dog 4), then the 

treatment will have little improving effect. In these scenarios, the organization during AF is already high, 

causing the rank-sum test to show no significant difference between no-treatment and treatment 

groups. The organization of the atrium with rotigaptide treatment is more stable with increasing 

rotigaptide doses, showing a consistently higher organization factor over all epochs, except in the case 

of Dog 1, where 300 nM had a slightly negative global organization effect when compared to 10 nM.  

 When organization is evaluated with the amplitude cutoff of 0.5 and at 3.90625 Hz, both Dog 1 

and Dog 3 had organization over 40% for all datasets, with or without treatment. Therefore, AF does still 

have organization even without treatment, especially due to cell memory. The myocytes were 

tachypaced at 4 Hz for four weeks. Dog 2 showed significant improvement in organization with 

treatment at this frequency range, and Dog 4 showed little effect to the treatment at this frequency 

range. 
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Frequency Phenomena 

 Most of the datasets have shown some degree of organization at 3.90625 Hz as shown in Table 

4 with amplitude cutoff of 0.5. With a cutoff of 0.8, most of the 4 Hz content is attenuated. Prior to the 

AF episodes, the hearts were paced at 240 BPM (4 Hz) for four weeks. It has been previously shown that 

the atrial substrate adjusts to long-term effects [30]. The significance of other dominant coupled 

frequency values is unknown (4.6875 Hz, 1.5625 Hz, and 6.2500 Hz). 

Mechanisms of Atrial Fibrillation 

 The different frequencies present and variation in response to rotigaptide imply different AF 

mechanisms. Dogs 1 and 4 had prominent, steady dominant coupled frequencies that would re-enforce 

the mother rotor theory [31-34]. However the sheer high number of other coupled frequency content 

before treatment could imply the multiple-wavelet theory [35]. A more rigorous evaluation would have 

to be performed with higher temporal resolution in order to determine conduction vector paths to 

support mechanistic theories.  

Regardless, the similarity in response by Dogs 1 and 4, and possibly 3, imply similar AF 

mechanisms. Dog 2’s unique response could imply a different mechanism, further supporting the theory 

that AF mechanisms are not independent nor concrete, and could be additive and/or distinctive in 

nature [34]. 

 

  



www.manaraa.com

33 
 

V. Conclusion 

Adding rotigaptide significantly increases the organization of the right atrium during episodes of 

AF due to steadying of a dominant coupled frequency (n=2 of 4) and elimination of secondary 

frequencies (n=3 of 4). It maintains or improves organization of the atrium using a cross-bicoherence 

with surrogate threshold based organizational metric (n=4 of 4). This improved organization may lead to 

greater electrical cardioversion efficacy.  

Steadying of the dominant frequency with treatment was observed in two dogs. A higher 

number of channels are phase matched with the rotigaptide treatment as shown by the Rank-sum test 

for one dog (Dog 1). However in a dog (Dog 4), the organization at the DF did increase although it was 

not found to be statistically significant due to baseline organization already being high. Suppression of 

secondary frequency content was also observed in Dog 1 and Dog 4, in addition to Dog 3. 

In one dog (Dog 2), the rotigaptide treatment introduced more background coupled spectral 

content. However, the frequency non-specific, global organization was improved. Global organization 

was improved in Dog 1, 2, and 3. It stayed steady in Dog 4, because the organization of the baseline AF 

was already high. 

Although Rotigaptide may provide an overall increased organization to the atrium during 

fibrillation, clearly it is not able to act as a pure anti-arrhythmic to halt the episode in the CHF model. Its 

gap junction coupling properties have been shown to suppress AF vulnerability in acute ischemia models 

but not CHF [13, 15]. The gap junction coupling properties do lead to conduction velocity increase 

[16]and as a result greater global organization. 

Downfalls 

 The frequency resolution of 0.78125 Hz is very rough, which has a negative quantizing effect. 

Also, this project only evaluates the right atrium; it omits the left atrium although the data under the 

same conditions is available.  

When Botteron and Smith used their method of measuring organization index, they found the 

average organization was between 0.32 and 0.54 for AF compared with 0.91 and 0.95 for sinus rhythm 

[21]. Due to the lack of availability of sinus rhythm data, it is unknown how the CBicS algorithm would 

perform under sinus rhythm. However it can be hypothesized that at minimum 90% organization would 

be expected. 

Rotigaptide has poor oral bioavailability due to enzymatic degradation and inadequate mucosal 

penetration[4], however other drug delivery methods may prove to be reliable and effective. It is also 

currently unknown if rotigaptide would provide any preventative measure of AF. 
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Appendices 

Appendix A 

Signal Generator (Siu & Chon) 

function [x,y]=kin_crossbi_gen(signal_size,seg_size) 

fx1=0.03; 

fx2=0.12; 

fy1=0.03; 

fy2=0.12; 

  

%getting number of segments 

num_seg=floor(signal_size/seg_size); 

  

%creating random phase 

rand_phase=rand(4,num_seg); 

for i=1:4 

    rand_phase(i,:)=rand_phase(i,:)./max(rand_phase(i,:)); 

end 

rand_phase=abs(rand_phase); 

rand_phase=rand_phase./max(max(rand_phase)); 

rand_phase=rand_phase.*2.*pi; 

  

  

%looping for the signal 

for a=1:num_seg 

    for b=(a-1)*seg_size+1:a*seg_size 

        x1(b)=exp(-j.*((2.*pi.*fx1.*b)+rand_phase(1,a))); 

        x2(b)=exp(-j.*((2.*pi.*fx2.*b)+rand_phase(2,a))); 

        y1(b)=exp(-j.*((2.*pi.*fy1.*b)+rand_phase(3,a))); 

        y2(b)=exp(-j.*((2.*pi.*fy2.*b)+rand_phase(4,a))); 

        x(b)=x1(b)+x2(b)+(x1(b).*x2(b)); 

        y(b)=y1(b)+y2(b)+(y1(b).*x2(b)); 

    end 

end 

  

x=x'; 

y=y'; 
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Appendix B 

Main Call 

%% Data input & downsampler, pre-processing 

cd C:\Users\Administrator\Desktop\Algorithms\Primary\ 

direc='D:\Rafael\For Ki Chon BME SUNY\512 channel Plaque data\CHF Dog 988\'; 

stringer='988_169'; 

s=importdata([direc, stringer, '.txt'],'\t',1); 

RBArray=s.data(1:end,422:509); 

num_chans=numel(RBArray(1,1:end)); 

timeL=length(RBArray); 

stringer=[stringer,'_RB']; 

  

data=cell(1,num_chans); 

for k=1:num_chans 

    data{k}=RBArray(1:timeL,k); 

end 

  

% 11-29-2010 Pre-processing, DECIMATION 

parfor k=1:num_chans 

    data{k}=decimate(data{k}, 10); 

end 

  

parfor k=1:num_chans 

    data{k}=decimate(data{k}, 2); 

end 

  

  

%%  

nfft=128; % # of FFT points, make sure at least equal to or twice nsamp. 

wind=5; %Window Size for bispec only 

nsamp=128; %Number of samples per segment 

overlap=50; % 50% overlap 

samp=100; %Sampling frequency 

 

num_chans=length(data); 

pieceL=ceil(num_chans/8); %Number of chans must be a multiple of 8 in order to have 0 residuals. 

residuals=pieceL*8-num_chans;% CHECK RESIDUALS BEFORE RUNNING!!!!!!! 

  

randn('state',sum(100*clock)); %#ok<RAND> 

amp=zeros(num_chans,pieceL); 

f1=zeros(num_chans,pieceL); 

f2=zeros(num_chans,pieceL); 

large_Bicthres=cell(size(amp)); 

  

spmd     

if labindex==1 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=1:pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 
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        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1; 

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

  

if labindex==2 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=pieceL+1:2*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1; 

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

     

if labindex==3 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=2*pieceL+1:3*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1; 

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

     

if labindex==4 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=3*pieceL+1:4*pieceL; 

        for C=1:num_chans 



www.manaraa.com

37 
 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1; 

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

     

if labindex==5 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=4*pieceL+1:5*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1; 

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

  

     

if labindex==6 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=5*pieceL+1:6*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 
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        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1;         

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

  

if labindex==7 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=6*pieceL+1:7*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1;         

    end 

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

     

if labindex==8 

    E=1;clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Started']); 

    for D=7*pieceL+1:8*pieceL; 

        for C=1:num_chans 

            signal1 = data{C}; 

            signal2 = data{D}; 

            

Bicthres=kin_xbi_general_Bicthres_Optimized(signal1,signal2,nfft,wind,nsamp,overlap,samp); 

                if (Bicthres~=0) 

                    [~,max_index]=max(Bicthres(:,3)); 

                    amp(C,E)=Bicthres(max_index(1,1),3); 

                    f1(C,E)=Bicthres(max_index(1,1),1); 

                    f2(C,E)=Bicthres(max_index(1,1),2); 

                    large_Bicthres{C,E}=Bicthres; 

                end 

        end 

        if E==3; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 25% complete']); end 

        if E==7; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 50% complete']); end 

        if E==9; clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' 75% complete']); end 

        E=E+1;        

    end  

    clocker=(clock); disp([num2str(clocker(2)),'-',num2str(clocker(3)),' 

',num2str(clocker(4)),':',num2str(clocker(5)), ' Complete']) 

end 

  

end 
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master_Bicthres=[large_Bicthres{1}, large_Bicthres{2}, large_Bicthres{3}, large_Bicthres{4}, 

large_Bicthres{5}, large_Bicthres{6}, large_Bicthres{7}, large_Bicthres{8}];  

save(['D:\Rafael\Results\002b\amps-',stringer,'.mat'], 'master_Bicthres') 

master_amp=[amp{1}, amp{2}, amp{3}, amp{4}, amp{5}, amp{6}, amp{7}, amp{8}]; 

master_f1=[f1{1}, f1{2}, f1{3}, f1{4}, f1{5}, f1{6}, f1{7}, f1{8}]; 

master_f2=[f2{1}, f2{2}, f2{3}, f2{4}, f2{5}, f2{6}, f2{7}, f2{8}]; 

 

Appendix C  

Cross-bispectrum (Swami, [27] ) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Cross bispectrum program 

function [Bspec,waxis] = ... 

    bispecdx_samp (x, y, z, nfft, wind, nsamp, overlap,samp,plotflag) 

%BISPECDX Cross-Bispectrum estimation using the direct (fft-based) approach. 

%   [Bspec,waxis] = bispecdx (x,y,z, nfft, wind, segsamp,overlap,plotflag) 

%   x    - data vector or time-series 

%   y    - data vector or time-series  (same dimensions as x) 

%   z    - data vector or time-series  (same dimensions as x) 

%   nfft - fft length [default = power of two > segsamp] 

%   wind - window specification for frequency-domain smoothing 

%          if 'wind' is a scalar, it specifies the length of the side 

%             of the square for the Rao-Gabr optimal window  [default=5] 

%          if 'wind' is a vector, a 2D window will be calculated via 

%             w2(i,j) = wind(i) * wind(j) * wind(i+j) 

%          if 'wind' is a matrix, it specifies the 2-D filter directly 

%   segsamp - samples per segment [default: such that we have 8 segments] 

%           - if x is a matrix, segsamp is set to the number of rows 

%   overlap - percentage overlap, allowed range [0,99]. [default = 50]; 

%           - if x is a matrix, overlap is set to 0. 

%   plotflag- if 0, cross-bispectrum will not be displayed [default=1] 

%   Bspec   - estimated bispectrum: an nfft x nfft array, with origin 

%             at the center, and axes pointing down and to the right. 

%   waxis   - vector of frequencies associated with the rows and columns 

%             of Bspec;  sampling frequency is assumed to be 1. 

  

%  Copyright (c) 1991-2001 by United Signals & Systems, Inc.  

%       $Revision: 1.8 $ 

%  A. Swami   January 20, 1995 

  

%     RESTRICTED RIGHTS LEGEND 

% Use, duplication, or disclosure by the Government is subject to 

% restrictions as set parforth in subparagraph (c) (1) (ii) of the 

% Rights in Technical Data and Computer Software clause of DFARS 

% 252.227-7013. 

% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374, 

% Culver City, Caliparfornia 90231. 

% 

%  This material may be reproduced by or parfor the U.S. Government pursuant 

%  to the copyright license under the clause at DFARS 252.227-7013. 

  

% ----------------------- Parameter checks  --------------------------- 

    [lx, lrecs] = size(x); 

    [ly, nrecs] = size(y); 

    [lz, krecs] = size(z); 

    if (lx ~= ly | lrecs ~= nrecs | ly ~= lz | nrecs ~= krecs) 

       error(' x, y and z should have identical dimensions') 

    end 

  

    if (ly == 1) 

       x = x(:);  y = y(:);  z = z(:); ly = nrecs; nrecs = 1; 

    end 

  

    if (exist('plotflag') ~= 1)    plotflag = 1;   end 

    if (exist('nfft') ~= 1)            nfft = 128; end 
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    if (exist('overlap') ~= 1)      overlap = 50;  end 

    overlap = min(99, max(overlap,0)); 

    if (nrecs > 1)                  overlap =  0;  end 

    if (exist('nsamp') ~= 1)          nsamp = 0;   end 

    if (nrecs > 1)                    nsamp = ly;  end 

    if (nrecs == 1 & nsamp <= 0) 

       nsamp = fix(ly/ (8 - 7 * overlap/100)); 

    end 

    if (nfft  < nsamp)   nfft = 2^nextpow2(nsamp); end 

    overlap  = fix(overlap/100  * nsamp); 

    nadvance = nsamp - overlap; 

    nrecs    = fix ( (ly*nrecs - overlap) / nadvance); 

  

  

% ------------------- create the 2-D window ------------------------- 

  if (exist('wind') ~= 1) wind = 5; end 

  [m,n] = size(wind); 

  window = wind; 

  if (max(m,n) == 1)     % scalar: wind is size of Rao-Gabr window 

     winsize = wind; 

     if (winsize < 0) winsize = 5; end        % the window length L 

     winsize = winsize - rem(winsize,2) + 1;  % make it odd 

     if (winsize > 1) 

        mwind   = fix (nfft/winsize);            % the scale parameter M 

        lby2    = (winsize - 1)/2; 

  

        theta  = -lby2:lby2; 

        opwind = ones(winsize,1) * (theta .^2);       % w(m,n)=m^2 

        opwind = opwind + opwind' + theta' * theta;   % m^2 + n^2 + mn 

        opwind = 1 - (2*mwind/nfft)^2 * opwind;       % 

        hex    = ones(winsize,1) * theta;             % m 

        hex    = abs(hex) + abs(hex') + abs(hex+hex'); 

        hex    = (hex < winsize); 

        opwind = opwind .* hex; 

        opwind = opwind * (4 * mwind^2) / (7 * pi^2) ; 

     else 

        opwind = 1; 

     end 

  

  elseif (min(m,n) == 1)  % 1-D window passed: convert to 2-D 

     window = window(:); 

     if (any(imag(window) ~= 0 )) 

        disp(['1-D window has imaginary components: window ignored']) 

        window = 1; 

     end 

     if (any(window < 0)) 

        disp(['1-D window has negative components: window ignored']) 

        window = 1; 

     end 

     lwind  = length(window); 

     windf  = [window(lwind:-1:2); window];    % the full symmetric 1-D 

     window = [window; zeros(lwind-1,1)]; 

     opwind = (windf * windf')      ... 

              .* hankel(flipud(window), window); % w(m)w(n)w(m+n) 

     winsize = length(window); 

  

  else                    % 2-D window passed: use directly 

    winsize = m; 

    if (m ~= n) 

       disp('2-D window is not square: window ignored') 

       window = 1; 

       winsize = m; 

    end 

    if (rem(m,2) == 0) 

       disp('2-D window does not have odd length: window ignored') 

       window = 1; 

       winsize = m; 

    end 

    opwind  = window; 

  end 
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% ---------------- accumulate triple products ---------------------- 

  

    Bspec    = zeros(nfft,nfft); 

  

    mask = hankel([1:nfft],[nfft,1:nfft-1] );   % the hankel mask (faster) 

    locseg = [1:nsamp]'; 

    for krec = 1:nrecs 

        xseg   = x(locseg); 

    yseg   = y(locseg); 

        zseg   = z(locseg); 

        Xf     = fft(xseg-mean(xseg), nfft)/nsamp; 

        Yf     = fft(yseg-mean(yseg), nfft)/nsamp; 

        CZf    = fft(zseg-mean(zseg), nfft)/nsamp; 

        CZf    = conj(CZf); 

        Bspec  = Bspec + (Xf * Yf.') .* ... 

             reshape(CZf(mask), nfft, nfft); 

        locseg = locseg + nadvance; 

    end 

  

    Bspec = fftshift(Bspec)/(nrecs); 

  

% ----------------- frequency-domain smoothing ------------------------ 

  

  if (winsize > 1) 

      lby2 = (winsize-1)/2; 

      Bspec = conv2(Bspec,opwind); 

      Bspec = Bspec(lby2+1:lby2+nfft,lby2+1:lby2+nfft); 

  end 

% ------------ contout plot of magnitude bispectum -------------------- 

  

   if (rem(nfft,2) == 0) 

       waxis = [-nfft/2:(nfft/2-1)]'/nfft.*samp; 

   else 

       waxis = [-(nfft-1)/2:(nfft-1)/2]'/nfft.*samp; 

   end 

  

% if (plotflag) 

%    hold off, clf 

%   contour(abs(Bspec),4,waxis,waxis),grid 

%    contour(waxis,waxis,abs(Bspec),4), grid on  

%    mesh(waxis, waxis, abs(Bspec)) 

%    title('Cross-Bispectrum ') 

%    xlabel('f1'), ylabel('f2') 

%    set(gcf,'Name','Hosa BISPECDX') 

% end 

return 
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Appendix D 

Cross-bicoherence (Swami, [27] ) 

%Cross bicoherence program 

function [bic,waxis] = bicoherx_noplot_samp (w,x,y,  nfft, wind, nsamp, overlap,samp) 

%BICOHERX - Direct (FD) method for estimating cross-bicoherence 

%   [bic,waxis] = bicoherx (w,x,y,  nfft, wind, segsamp, overlap) 

%   w,x,y - data vector or time-series 

%         - should have identical dimensions 

%   nfft - fft length [default = power of two > nsamp] 

%          actual size used is power of two greater than 'nsamp' 

%   wind - specifies the time-domain window to be applied to each 

%          data segment; should be of length 'segsamp' (see below); 

%       otherwise, the default Hanning window is used. 

%   segsamp - samples per segment [default: such that we have 8 segments] 

%           - if x is a matrix, segsamp is set to the number of rows 

%   overlap - percentage overlap, 0 to 99  [default = 50] 

%           - if y is a matrix, overlap is set to 0. 

%   bic     - estimated cross-bicoherence: an nfft x nfft array, with 

%             origin at center, and axes pointing down and to the right. 

%   waxis   - vector of frequencies associated with the rows and columns 

%             of bic;  sampling frequency is assumed to be 1. 

  

%  Copyright (c) 1991-2001 by United Signals & Systems, Inc. 

%       $Revision: 1.7 $ 

%  A. Swami   January 20, 1995 

  

%     RESTRICTED RIGHTS LEGEND 

% Use, duplication, or disclosure by the Government is subject to 

% restrictions as set forth in subparagraph (c) (1) (ii) of the 

% Rights in Technical Data and Computer Software clause of DFARS 

% 252.227-7013. 

% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374, 

% Culver City, California 90231. 

% 

%  This material may be reproduced by or for the U.S. Government pursuant 

%  to the copyright license under the clause at DFARS 252.227-7013. 

  

  

% --------------------- parameter checks ----------------------------- 

  

    if (size(w) ~= size(x) | size(x) ~= size(y) ) 

       error(' w, x, and y should have identical dimensions') 

    end 

    [ly, nrecs] = size(y); 

    if (ly == 1) 

        ly = nrecs; nrecs = 1; 

         w = w(:);  x = x(:);  y = y(:); 

    end 

  

    if (exist('nfft') ~= 1)            nfft = 128; end 

    if (exist('overlap') ~= 1)      overlap = 50;  end 

    overlap = max(0,min(overlap,99)); 

    if (nrecs > 1)                  overlap = 0;   end 

    if (exist('nsamp') ~= 1)          nsamp = 0;  end 

    if (nrecs > 1)                    nsamp = ly;  end 

    if (nrecs == 1 & nsamp <= 0) 

       nsamp = fix(ly/ (8 - 7 * overlap/100)); 

    end 

    if (nfft  < nsamp)   nfft = 2^nextpow2(nsamp); end 

  

    overlap  = fix(overlap/100  * nsamp); 

    nadvance = nsamp - overlap; 

    nrecs    = fix ( (ly*nrecs - overlap) / nadvance); 

  

% ---------------------------------------------------------------------- 

    if (exist('wind') ~= 1) wind = hanning(nsamp); end 

    [rw,cw] = size(wind); 



www.manaraa.com

43 
 

    if (min(rw,cw) ~= 1 | max(rw,cw) ~= nsamp) 

%      disp(['Segment size  is ',int2str(nsamp)]) 

%      disp(['"wind" array  is ',int2str(rw),' by ',int2str(cw)]) 

%      disp(['Using default window']) 

       wind = hanning(nsamp); 

    end 

    wind = wind(:); 

% ---------------- accumulate triple products ---------------------- 

  

    bic  = zeros(nfft,nfft); 

    Pyy  = zeros(nfft,1);         Pww = Pyy; Pxx = Pyy; 

  

    mask = hankel([1:nfft],[nfft,1:nfft-1] );   % the hankel mask (faster) 

    Yf12 = zeros(nfft,nfft); 

    ind  = [1:nsamp]'; 

  

    for k = 1:nrecs 

        ws  = w(ind); ws = (ws-mean(ws)).* wind; 

        Wf  = fft(ws,nfft)  / nsamp;  CWf = conj(Wf); 

        Pww = Pww + Wf .* CWf; 

  

        xs  = x(ind); xs = (xs-mean(xs)).* wind; 

        Xf  = fft(xs,nfft)  / nsamp;  CXf = conj(Xf); 

        Pxx = Pxx + Xf .* CXf; 

  

        ys  = y(ind);   ys = (ys(:) - mean(ys)) .* wind; 

    Yf  = fft(ys,nfft)  / nsamp;  CYf = conj(Yf); 

    Pyy = Pyy + Yf .* CYf; 

  

        Yf12(:)  = CYf(mask); 

        bic = bic + (Wf * Xf.') .* Yf12; 

  

        ind = ind + nadvance; 

    end 

  

    bic     = bic / nrecs; 

    Pyy     = Pyy  / nrecs;   Pww = Pww / nrecs;  Pxx = Pxx / nrecs; 

    mask(:) = Pyy(mask); 

    bic = abs(bic).^2 ./ (Pww * Pxx.' .* mask); 

    bic = fftshift(bic) ; 

  

% ------------ contour plot of magnitude bispectum -------------------- 

  

   if (rem(nfft,2) == 0) 

       waxis = [-nfft/2:(nfft/2-1)]'/nfft.*samp; 

   else 

       waxis = [-(nfft-1)/2:(nfft-1)/2]'/nfft.*samp; 

   end 

%  

%    hold off, clf 

% %   contour(bic,4,waxis,waxis),grid 

%    contour(waxis,waxis,bic,4), grid on  

%    title('Cross-Bicoherence') 

%    xlabel('f1'), ylabel('f2') 

%    set(gcf,'Name','Hosa BICOHERX') 

%  

%    [colmax,row] = max(bic)  ; 

%    [maxval,col] = max(colmax); 

%    row = row(col); 

%    disp(['Max: bic(',num2str(waxis(row)),',',num2str(waxis(col)),') = ', ... 

%           num2str(maxval) ]) 

%  

% return 
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Appendix E 

Surrogate Loop (Siu & Chon) 

function [surr] = surr_gen(signal)     

surr=zeros(length(signal),100);  

parfor i=1:100 

    [surr(:,i)]=generate_surrogate(signal); 

end 

 

Appendix F 

Generate Surrogates (Gautama, [36]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Surrogate data generation program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Generate surrogate data with matching amplitude spectrum and 

% amplitude distribution (Schreiber and Schmitz, 1996). 

% Multivariate extension as described in Schreiber and Schmitz (2000) 

% 

% Usage: [Xs E] = generate_surrogate (X, specflag); 

%   specflag    exact amplitude spectrum (1, default), otherise amp distr 

%   X [pp x dim] 

  

function [Xs,E] = generate_surrogate(X) 

  

max_it = 500; 

[pp dim] = size(X); 

  

if (dim==1) 

    X = X(:); 

    pp = length(X); 

     

    % Initial Conditions 

    rn = X(randperm(pp)); 

    Yamp = abs(fft(X)); % Desired amplitude spectrum 

    Xsorted = sort(X);  % Desired signal distribution 

     

    E = zeros(1,max_it); 

    c = 1; 

    prev_err = 1000000; 

    err = prev_err - 1; 

    while (prev_err>err) && (c<max_it) 

         

        % Match Amplitude Spec 

        Yrn = fft(rn); 

        Yang = angle(Yrn); 

        sn = real(ifft(Yamp.*(cos(Yang)+sqrt(-1).*sin(Yang)))); 

         

        % Match Signal Distribution 

        [~, INDs] = sort(sn); 

        rn(INDs) = Xsorted; 

         

        % Eval Convergence 

        prev_err = err; 

        A2 = abs(Yrn); 

        %err = mean(mean(abs(A2-Yamp))); 

        err = mean(abs(A2-Yamp)); 

        E(c) = err; 

         

        c = c+1; 

    end 

    E = E(1:c-1); 
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%     if (specflag==1) 

        Xs = sn;    % Exact Amp Spectrum 

%     else 

%         Xs = rn;  % Exact Amp Distribution 

%     end 

     

end 

  

if (dim>1) 

    Y = fft(X);     % fft every column 

    Yamp = abs(Y); 

    Porig = angle(Y); 

     

    % Initial Conditions 

    rn = zeros(size(X)); 

    for k=1:dim 

        rn(:,k) = X(randperm(pp),k); 

    end 

    Xsorted = sort(X); 

     

    prev_err = 1000000; 

    err = prev_err - 1; 

    c = 1; 

    while (prev_err>err) && (c<max_it) 

        % Match Amplitude Spec 

        Prn = angle(fft(rn)); 

        goal = Prn - Porig; 

        AUX1 = sum(cos(goal),2); 

        alpha = repmat((AUX1~=0).*atan(sum(sin(goal),2)./sum(AUX1+(AUX1==0),2)),1,dim); 

        alpha = alpha + repmat(pi.*(sum(cos(alpha-goal),2)<0),1,dim); 

        Pcurr = Porig + alpha; 

        sn = real(ifft(Yamp.*(cos(Pcurr)+sqrt(-1).*sin(Pcurr)))); 

         

        % Match Signal Distribution 

        [~, INDs] = sort(sn); 

        for k=1:dim 

            rn(INDs(:,k),k) = Xsorted(:,k); 

        end 

         

        % Eval Convergence 

        prev_err = err; 

        A2 = abs(fft(rn)); 

        err = mean(mean(abs(A2-Yamp))); 

        E(c) = err; 

        c = c+1; 

    end 

     

    if (flag==1) 

        Xs = sn;    % Exact Amp Spectrum 

    else 

        Xs = rn;    % Exact Amp Distribution 

    end 

     

end 
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Appendix G 

Summary of Acquired Electrograms  

 Each dog had a minimum of one AF episode for each treatment group (no treatment, 10 nM, 

and 300 nM). Some dogs had several AF episodes within the same treatment group. The start of every 

new episode is indicated by a “1”, recorded one minute after the start of that new episode. If the 

episode is sustained across more than one recording, the value indicates the time point after the start of 

the episode in minutes. Sustained episodes are shaded in gray. Additional sustained episodes for the 

same dog and treatment group are shaded in light blue. 

Table 7: Summary of Acquired Electrograms (time of acquisition in minutes) 

Dog 1 
922 

Dog 2 
987 

Dog 3 
988 

Dog 4 
991 

no Rx 10 
nM 

300 
nM 

no Rx 10 
nM 

300 
nM 

no Rx 10 
nM 

300 
nM 

no Rx 10 
nM 

300 
nM 

1 1 1 1 1 1 1 1 1 1 1 1 

5 5 5 1 1 1 1 5 1 3 5 2 

10 10 10 5 1 1 1 8 1 5 10   

15 15 15 10 1 2 2  5 9 15   

20 20 20 15 1     10 1 20   

25 25 25 1 2      15 5 25   

30 30 30 1       20 8 1   

     1       25 1 1   

               1 1   

                 5   

                 10   
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Appendix H 

Frequency Finder  

function [uniqFreqs, DFreq, DChan]=sig_bars(stringer, plotflag) 

% This function finds the signifiant amplitudes in the output array, and 

% plots channels and frequencies with bars. 

% Open matlab variable file, variable name = master_Bicthres 

% Note: This function requires the non-standard function count.m 

direc='D:\Rafael\Results\002b\'; 

% stringer='922_21_RB';  % Dataset name 

% plotflag=1; 

data=open([direc, 'amps-', stringer, '.mat']); 

threshold=0.5; 

  

%% Significance Finder, Greater than amp threshold as defined above 

events=0; 

chan=[]; 

freq=[]; 

amps=[]; 

for b=1:length(data.master_Bicthres) 

    for k=1:length(data.master_Bicthres) 

        if b==k; 

            break 

        else 

            temp=data.master_Bicthres{b,k}; 

            if temp~=0 

                [m, ~]=size(temp); 

                for p=1:m 

                    if  temp(p,3) > threshold && 0 < temp(p,1) &&... 

                          temp(p,1) < 20 && 0 < temp (p,2) && temp(p,2)... 

                           < 20 

                        events=events+1; 

                        chan=[chan; [b k]];        %#ok<AGROW>                                    

                        freq=[freq; temp(p,1) temp(p,2)];  %#ok<AGROW>                           

                        amps=[amps; temp(p,3)];        %#ok<AGROW> 

                               

                    end 

                end 

            end 

            clearvars temp 

        end 

    end 

end 

  

%% Channel Counting & Bar Plot 

uniqChan=unique(chan); 

temp=zeros(length(uniqChan),2); 

for k= 1:length(uniqChan) 

    stringChan=num2str(uniqChan(k),15); % 15 decimal precision 

    temp(k,1)= count(chan(:,1),['==',stringChan]); 

    temp(k,2)= count(chan(:,2),['==',stringChan]); 

end 

  

uniqChan(:,2)=temp(:,1)+temp(:,2); 

  

if plotflag==1; 

figure(1) 

bar(uniqChan(:,1),uniqChan(:,2)) 

xlabel('Channel'); ylabel('Number of Interactions') 

xlim([0 88]) 

title([stringer(1), stringer(2), stringer(3), ' ', stringer(5)... 

    stringer(6), ' ', stringer(8), stringer(9)]) 

else 

     

end 

  

  

[~, locDChan]=max(uniqChan(:,2)); 
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DChan=uniqChan(locDChan); 

  

  

%% Frequency Counting & Bar Plot 

uniqFreqs=unique(freq); 

temp=zeros(length(uniqFreqs),2); 

for k= 1:length(uniqFreqs) 

    stringFreq=num2str(uniqFreqs(k),15); 

    temp(k,1)= count(freq(:,1),['==',stringFreq]); 

    temp(k,2)= count(freq(:,2),['==',stringFreq]); 

end 

  

uniqFreqs(:,2)=temp(:,1)+temp(:,2); 

  

  

if plotflag==1; 

figure(2) 

bar(uniqFreqs(:,1),uniqFreqs(:,2),0.5);  

xlabel('Frequency (Hz)'); ylabel('Number of Interactions') 

xlim([0 25]) 

title([stringer(1), stringer(2), stringer(3), ' ', stringer(5)... 

    stringer(6), ' ', stringer(8), stringer(9)]) 

else 

     

end 

  

[~, locDFreq]=max(uniqFreqs(:,2)); 

DFreq=uniqFreqs(locDFreq); 
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Appendix I 

Organization Index Loop For All Files  

function orgzer=init_looper(dataset,DF) 

% input "DF" after dataset 

  

global orgzer k 

orgzer=cell(1,3); 

  

% Dataset: 922 

if strcmp(dataset, '922_RB') 

    for k=1:21; 

         

        if k==1; 

            stringer='922_19_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==2; 

            stringer='922_20_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==3; 

            stringer='922_21_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==4; 

            stringer='922_22_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==5; 

            stringer='922_23_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==6; 

            stringer='922_24_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==7; 

            stringer='922_25_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==8; 

            stringer='922_79_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==9; 

            stringer='922_80_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==10; 

            stringer='922_81_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==11; 

            stringer='922_82_RB'; 

            comp_str(stringer, DF) 

        end 
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        if k==12; 

            stringer='922_83_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==13; 

            stringer='922_84_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==14; 

            stringer='922_85_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==15; 

            stringer='922_144_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==16; 

            stringer='922_145_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==17; 

            stringer='922_146_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==18; 

            stringer='922_147_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==19; 

            stringer='922_148_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==20; 

            stringer='922_149_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==21; 

            stringer='922_150_RB'; 

            comp_str(stringer, DF) 

        end 

    end 

end 

  

% Dataset: 987 

if strcmp(dataset, '987_RB') 

    for k=1:18; 

         

        if k==1; 

            stringer='987_43_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==2; 

            stringer='987_44_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==3; 

            stringer='987_45_RB'; 

            comp_str(stringer, DF) 

        end 
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        if k==4; 

            stringer='987_46_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==5; 

            stringer='987_47_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==6; 

            stringer='987_48_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==7; 

            stringer='987_49_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==8; 

            stringer='987_50_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==9; 

            stringer='987_87_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==10; 

            stringer='987_88_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==11; 

            stringer='987_89_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==12; 

            stringer='987_90_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==13; 

            stringer='987_91_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==14; 

            stringer='987_92_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==15; 

            stringer='987_173_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==16; 

            stringer='987_174_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==17; 

            stringer='987_175_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==18; 
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            stringer='987_176_RB'; 

            comp_str(stringer, DF) 

        end 

    end 

end 

  

% Dataset: 988 

if strcmp(dataset, '988_RB') 

    for k=1:15; 

        if k==1; 

            stringer='988_38_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==2; 

            stringer='988_39_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==3; 

            stringer='988_40_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==4; 

            stringer='988_41_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==5; 

            stringer='988_78_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==6; 

            stringer='988_79_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==7; 

            stringer='988_80_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==8; 

            stringer='988_162_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==9; 

            stringer='988_163_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==10; 

            stringer='988_164_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==11; 

            stringer='988_165_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==12; 

            stringer='988_166_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==13; 

            stringer='988_167_RB'; 
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            comp_str(stringer, DF) 

        end 

         

        if k==14; 

            stringer='988_168_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==15; 

            stringer='988_169_RB'; 

            comp_str(stringer, DF) 

        end 

    end 

end 

  

% Dataset: 991 

if strcmp(dataset, '991_RB') 

    for k=1:22; 

         

        if k==1; 

            stringer='991_37_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==2; 

            stringer='991_38_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==3; 

            stringer='991_39_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==4; 

            stringer='991_40_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==5; 

            stringer='991_41_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==6; 

            stringer='991_42_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==7; 

            stringer='991_43_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==8; 

            stringer='991_44_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==9; 

            stringer='991_45_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==10; 

            stringer='991_82_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==11; 

            stringer='991_83_RB'; 
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            comp_str(stringer, DF) 

        end 

         

        if k==12; 

            stringer='991_84_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==13; 

            stringer='991_85_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==14; 

            stringer='991_86_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==15; 

            stringer='991_87_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==16; 

            stringer='991_88_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==17; 

            stringer='991_89_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==18; 

            stringer='991_90_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==19; 

            stringer='991_91_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==20; 

            stringer='991_92_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==21; 

            stringer='991_170_RB'; 

            comp_str(stringer, DF) 

        end 

         

        if k==22; 

            stringer='991_171_RB'; 

            comp_str(stringer, DF) 

        end 

    end 

end 

  

function comp_str(stringer, DF) 

global orgzer k 

 [stringer,org,freq]=sig_Freq_Chan(stringer,0,DF); 

     

    orgzer{k,1}=stringer; 

    orgzer{k,2}=org; 

    orgzer{k,3}=freq; 

     

return 
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Appendix J 

Master looping file for Organization Index with Manual Frequency Input 

 

matlabpool 4 

  

spmd 

    if labindex==1 

        orgzer=init_looper('922_RB', 3.125); %specify frequency here 

    end 

     

    if labindex==2 

        orgzer=init_looper('987_RB', 3.125); %specify frequency here 

    end 

     

    if labindex==3 

        orgzer=init_looper('988_RB', 3.125); %specify frequency here 

    end 

     

    if labindex==4 

        orgzer=init_looper('991_RB', 3.125); %specify frequency here 

    end 

end 

  

amplitudes=vertcat(orgzer{1},orgzer{2},orgzer{3},orgzer{4}); 

output=vertcat(amplitudes{1:end,2}); 

  

matlabpool close 
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Appendix K 

Organization Index 

function [stringer,Freq_Chan_Org,DF]=sig_Freq_Chan(stringer,plotflag, DF) 

% Freq_Chan_Org (Output): Organization Index 

% Plotflag: 1 or 0 

% DF: Specify frequency for channel organization 

% DEPENDENCIES: vec2row.m count.m round2.m 

  

%% x and y space for RB (taken from electrode placement array) 

x=[0 
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14 

16 

18 

19 

17 

15 

13 

11 

9 

7 

5 

3 

1 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

19 

17 

15 

13 

11 

9 

7 

5 

3 

1 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

19 

17 

15 

13 

11 

9 

7 

5 
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3 

1 

0 

2 

4 

6 

8 

9 

7 

5 

3 

1 

0 

2 

4 

6 

8 

7 

5 

3 

1 

0 

2 

4 

6 

7 

5 

3 

1 

2]; 

  

y=[12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 
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8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

6 

6 

6 

6 

6 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

3 

3 

3 

3 

2 

2 

2 

2 

1 

1 

1 

1 

0]; 

  

%% 

direc='D:\Rafael\Results\002b\'; 

% stringer='922_24_RB'; % Dataset name 

% plotflag=0; 

data=open([direc, 'amps-', stringer, '.mat']); 

threshold=0.5; 

NumChans=length(data.master_Bicthres); 

%% Significance Finder, Greater than amp threshold, maintains structure 

events=0; 

chan=cell(NumChans,NumChans); 

freq=cell(NumChans,NumChans); 

for b=1:NumChans 

    for k=1:NumChans 

        if b==k; 

            freq{b,k}=[]; 

            chan{b,k}=[]; 

        else 

            temp=data.master_Bicthres{b,k}; 

            if temp~=0 

                [m, ~]=size(temp); 

                for p=1:m 

                    if temp(p,3) > threshold 
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                        events=events+1; 

                        freq{b,k}=[freq{b,k}; temp(p,1) temp(p,2)]; 

                        chan{b,k}=[chan{b,k}; [b k]]; 

                    end 

                end 

            end 

            clearvars temp 

        end 

    end 

end 

  

  

% Coupled Frequency Finder 

% freqRes=0.78125; 

freqRes=0; 

DFHarm=round2([DF DF*2 DF*3 DF-freqRes DF+freqRes DF*2-freqRes DF*2+freqRes DF*3-freqRes 

DF*3+freqRes DF*4 DF*5 DF*6],0.0001); 

  

if DF~=0 

     

coupledFreqs=zeros(NumChans,NumChans); 

for b=1:NumChans 

    for k=1:NumChans 

        temp=single(freq{b,k}); 

        if temp~=0 

        [m,~]=size(temp); 

        for p=1:m 

            if (round2(temp(p,1),0.0001)==DF ||round2(temp(p,1),0.0001)==DFHarm(4) 

||round2(temp(p,1),0.0001)==DFHarm(5))... 

                && (round2(temp(p,2),0.0001)==DFHarm(1) ||round2(temp(p,2),0.0001)==DFHarm(2) 

||round2(temp(p,2),0.0001)==DFHarm(3)||round2(temp(p,2),0.0001)==DFHarm(4)||round2(temp(p,2),0.00

01)==DFHarm(5)||round2(temp(p,2),0.0001)==DFHarm(6)||round2(temp(p,2),0.0001)==DFHarm(7)||round2(

temp(p,2),0.0001)==DFHarm(8)||round2(temp(p,2),0.0001)==DFHarm(9)||round2(temp(p,2),0.0001)==DFHa

rm(10)||round2(temp(p,2),0.0001)==DFHarm(11)||round2(temp(p,2),0.0001)==DFHarm(12)) 

                coupledFreqs(b,k)=1;  

            end 

            if (round2(temp(p,2),0.0001)==DF || round2(temp(p,2),0.0001)==DFHarm(4)  || 

round2(temp(p,2),0.0001)==DFHarm(5))... 

                && (round2(temp(p,1),0.0001)==DFHarm(1) ||round2(temp(p,1),0.0001)==DFHarm(2) 

||round2(temp(p,1),0.0001)==DFHarm(3)||round2(temp(p,1),0.0001)==DFHarm(4)||round2(temp(p,1),0.00

01)==DFHarm(5)||round2(temp(p,1),0.0001)==DFHarm(6)||round2(temp(p,1),0.0001)==DFHarm(7)||round2(

temp(p,1),0.0001)==DFHarm(8)||round2(temp(p,1),0.0001)==DFHarm(9)||round2(temp(p,1),0.0001)==DFHa

rm(10)||round2(temp(p,1),0.0001)==DFHarm(11)||round2(temp(p,1),0.0001)==DFHarm(12)) 

                coupledFreqs(b,k)=1;  

            end 

        end 

        end 

    end 

end 

  

  

% Coupled Channel Finder based off Dominant Frequency 

VectorChan=[]; 

for b=1:NumChans 

    for k=1:NumChans 

        if coupledFreqs(b,k) 

            VectorChan=[VectorChan, vec2row(unique(chan{b,k}))];                     %#ok<AGROW> 

        end 

    end 

end 

  

uniqChans=unique(VectorChan); 

coupledChans=zeros(NumChans,1); 

for p=1:NumChans 

    if count(uniqChans,['==',num2str(p)]); 

        coupledChans(p)=1; 

    end 

end 

  

Freq_Chan_Org=length(uniqChans)/NumChans; 
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%% Scatter Plot Results using X and Y coordinates of electrode plaque 

  

if plotflag==1; 

figure 

colormap(flipud(flag)); 

scatter(x,y,200,coupledChans,'filled'); 

axis([-1 20 -1 13]);axis off; 

caxis([0 1]) 

% title([stringer(1), stringer(2), stringer(3), ' ', stringer(5)... 

%     stringer(6), ' ', stringer(8), stringer(9)]) 

% saveas(gcf, ['D:\Rafael\Plots\FreqChanPlot\',stringer,'.tiff'], 'tiff') 

% saveas(gcf, ['D:\Rafael\Plots\EPS\',stringer,'.eps'], 'eps') 

end 

else 

    Freq_Chan_Org=0; 

    DF=0; 

end 
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Appendix K 

Time-Frequency Analysis 

matlabpool 4 

freqband=0:0.78125:20; 

  

spmd 

    if labindex==1; 

        colormatrix=freqLOOPERband('922_RB'); 

    end 

    if labindex==2; 

        colormatrix=freqLOOPERband('987_RB'); 

    end 

    if labindex==3; 

        colormatrix=freqLOOPERband('988_RB'); 

    end 

    if labindex==4; 

        colormatrix=freqLOOPERband('991_RB'); 

    end 

end 

  

  

[~,N]=size(colormatrix{1}); 

figure(1) 

imagesc(1:N,freqband,colormatrix{1}); 

ylabel('Frequency (Hz)') 

xlabel('Time') 

set(gca,'YDir','Normal') 

set(gca,'XTickLabel', '') 

hold on 

plot(7.5,0:0.01:20,'color','white') 

plot(14.5,0:0.01:20,'color','white') 

ylim([0 20]) 

title('Dog 1') 

text(3.5,19,'Baseline','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(10.5,19,'10 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(18.5,19,'300 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

caxis([0 176]) % for 0.8 amp 

  

[~,N]=size(colormatrix{2}); 

figure(2) 

imagesc(1:N,freqband,colormatrix{2}); 

ylabel('Frequency (Hz)') 

xlabel('Time') 

set(gca,'YDir','Normal') 

set(gca,'XTickLabel', '') 

hold on 

plot(8.5,0:0.01:20,'color','white') 

plot(14.5,0:0.01:20,'color','white') 

ylim([0 20]) 

title('Dog 2') 

text(4.5,19,'Baseline','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(11.5,19,'10 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(16.5,19,'300 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

caxis([0 176]) % for 0.8 amp 

  

[~,N]=size(colormatrix{3}); 

figure(3) 

imagesc(1:N,freqband,colormatrix{3}); 

ylabel('Frequency (Hz)') 

xlabel('Time') 

set(gca,'YDir','Normal') 



www.manaraa.com

62 
 

set(gca,'XTickLabel', '') 

hold on 

plot(4.5,0:0.01:20,'color','white') 

plot(7.5,0:0.01:20,'color','white') 

ylim([0 20]) 

title('Dog 3') 

text(2.5,19,'Baseline','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(6,19,'10 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(11.5,19,'300 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

caxis([0 176]) % for 0.8 amp 

  

[~,N]=size(colormatrix{4}); 

figure(4) 

imagesc(1:N,freqband,colormatrix{4}); 

ylabel('Frequency (Hz)') 

xlabel('Time') 

set(gca,'YDir','Normal') 

set(gca,'XTickLabel', '') 

hold on 

plot(9.5,0:0.01:20,'color','white') 

plot(20.5,0:0.01:20,'color','white') 

ylim([0 20]) 

title('Dog 4') 

text(5,19,'Baseline','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(15,19,'10 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

text(21.5,19,'300 nM','HorizontalAlignment','center',... 

    'FontWeight','bold','Color',[1 1 1]) 

caxis([0 176]) % for 0.8 amp 

  

matlabpool close 
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Appendix L 

Looper for Time-Frequency Analysis 

function colormatrix=freqLOOPERband(dataset) 

global colormatrix k 

colormatrix=zeros(26,1); 

  

% Dataset: 922 

if strcmp(dataset, '922_RB') 

    for k=1:21; 

         

        if k==1; 

            stringer='922_19_RB'; 

            comp_str(stringer) 

        end 

         

        if k==2; 

            stringer='922_20_RB'; 

            comp_str(stringer) 

        end 

         

        if k==3; 

            stringer='922_21_RB'; 

            comp_str(stringer) 

        end 

         

        if k==4; 

            stringer='922_22_RB'; 

            comp_str(stringer) 

        end 

         

        if k==5; 

            stringer='922_23_RB'; 

            comp_str(stringer) 

        end 

         

        if k==6; 

            stringer='922_24_RB'; 

            comp_str(stringer) 

        end 

         

        if k==7; 

            stringer='922_25_RB'; 

            comp_str(stringer) 

        end 

         

        if k==8; 

            stringer='922_79_RB'; 

            comp_str(stringer) 

        end 

         

        if k==9; 

            stringer='922_80_RB'; 

            comp_str(stringer) 

        end 

         

        if k==10; 

            stringer='922_81_RB'; 

            comp_str(stringer) 

        end 

         

        if k==11; 

            stringer='922_82_RB'; 

            comp_str(stringer) 

        end 

         

        if k==12; 

            stringer='922_83_RB'; 
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            comp_str(stringer) 

        end 

         

        if k==13; 

            stringer='922_84_RB'; 

            comp_str(stringer) 

        end 

         

        if k==14; 

            stringer='922_85_RB'; 

            comp_str(stringer) 

        end 

         

        if k==15; 

            stringer='922_144_RB'; 

            comp_str(stringer) 

        end 

         

        if k==16; 

            stringer='922_145_RB'; 

            comp_str(stringer) 

        end 

         

        if k==17; 

            stringer='922_146_RB'; 

            comp_str(stringer) 

        end 

         

        if k==18; 

            stringer='922_147_RB'; 

            comp_str(stringer) 

        end 

         

        if k==19; 

            stringer='922_148_RB'; 

            comp_str(stringer) 

        end 

         

        if k==20; 

            stringer='922_149_RB'; 

            comp_str(stringer) 

        end 

         

        if k==21; 

            stringer='922_150_RB'; 

            comp_str(stringer) 

        end 

    end 

end 

  

% Dataset: 987 

if strcmp(dataset, '987_RB') 

    for k=1:18; 

         

        if k==1; 

            stringer='987_43_RB'; 

            comp_str(stringer) 

        end 

         

        if k==2; 

            stringer='987_44_RB'; 

            comp_str(stringer) 

        end 

         

        if k==3; 

            stringer='987_45_RB'; 

            comp_str(stringer) 

        end 

         

        if k==4; 

            stringer='987_46_RB'; 



www.manaraa.com

65 
 

            comp_str(stringer) 

        end 

         

        if k==5; 

            stringer='987_47_RB'; 

            comp_str(stringer) 

        end 

         

        if k==6; 

            stringer='987_48_RB'; 

            comp_str(stringer) 

        end 

         

        if k==7; 

            stringer='987_49_RB'; 

            comp_str(stringer) 

        end 

         

        if k==8; 

            stringer='987_50_RB'; 

            comp_str(stringer) 

        end 

         

        if k==9; 

            stringer='987_87_RB'; 

            comp_str(stringer) 

        end 

         

        if k==10; 

            stringer='987_88_RB'; 

            comp_str(stringer) 

        end 

         

        if k==11; 

            stringer='987_89_RB'; 

            comp_str(stringer) 

        end 

         

        if k==12; 

            stringer='987_90_RB'; 

            comp_str(stringer) 

        end 

         

        if k==13; 

            stringer='987_91_RB'; 

            comp_str(stringer) 

        end 

         

        if k==14; 

            stringer='987_92_RB'; 

            comp_str(stringer) 

        end 

         

        if k==15; 

            stringer='987_173_RB'; 

            comp_str(stringer) 

        end 

         

        if k==16; 

            stringer='987_174_RB'; 

            comp_str(stringer) 

        end 

         

        if k==17; 

            stringer='987_175_RB'; 

            comp_str(stringer) 

        end 

         

        if k==18; 

            stringer='987_176_RB'; 

            comp_str(stringer) 
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        end 

    end 

end 

  

% Dataset: 988 

if strcmp(dataset, '988_RB') 

    for k=1:15; 

        if k==1; 

            stringer='988_38_RB'; 

            comp_str(stringer) 

        end 

         

        if k==2; 

            stringer='988_39_RB'; 

            comp_str(stringer) 

        end 

         

        if k==3; 

            stringer='988_40_RB'; 

            comp_str(stringer) 

        end 

         

        if k==4; 

            stringer='988_41_RB'; 

            comp_str(stringer) 

        end 

         

        if k==5; 

            stringer='988_78_RB'; 

            comp_str(stringer) 

        end 

         

        if k==6; 

            stringer='988_79_RB'; 

            comp_str(stringer) 

        end 

         

        if k==7; 

            stringer='988_80_RB'; 

            comp_str(stringer) 

        end 

         

        if k==8; 

            stringer='988_162_RB'; 

            comp_str(stringer) 

        end 

         

        if k==9; 

            stringer='988_163_RB'; 

            comp_str(stringer) 

        end 

         

        if k==10; 

            stringer='988_164_RB'; 

            comp_str(stringer) 

        end 

         

        if k==11; 

            stringer='988_165_RB'; 

            comp_str(stringer) 

        end 

         

        if k==12; 

            stringer='988_166_RB'; 

            comp_str(stringer) 

        end 

         

        if k==13; 

            stringer='988_167_RB'; 

            comp_str(stringer) 

        end 
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        if k==14; 

            stringer='988_168_RB'; 

            comp_str(stringer) 

        end 

         

        if k==15; 

            stringer='988_169_RB'; 

            comp_str(stringer) 

        end 

    end 

end 

  

% Dataset: 991 

if strcmp(dataset, '991_RB') 

    for k=1:22; 

         

        if k==1; 

            stringer='991_37_RB'; 

            comp_str(stringer) 

        end 

         

        if k==2; 

            stringer='991_38_RB'; 

            comp_str(stringer) 

        end 

         

        if k==3; 

            stringer='991_39_RB'; 

            comp_str(stringer) 

        end 

         

        if k==4; 

            stringer='991_40_RB'; 

            comp_str(stringer) 

        end 

         

        if k==5; 

            stringer='991_41_RB'; 

            comp_str(stringer) 

        end 

         

        if k==6; 

            stringer='991_42_RB'; 

            comp_str(stringer) 

        end 

         

        if k==7; 

            stringer='991_43_RB'; 

            comp_str(stringer) 

        end 

         

        if k==8; 

            stringer='991_44_RB'; 

            comp_str(stringer) 

        end 

         

        if k==9; 

            stringer='991_45_RB'; 

            comp_str(stringer) 

        end 

         

        if k==10; 

            stringer='991_82_RB'; 

            comp_str(stringer) 

        end 

         

        if k==11; 

            stringer='991_83_RB'; 

            comp_str(stringer) 

        end 
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        if k==12; 

            stringer='991_84_RB'; 

            comp_str(stringer) 

        end 

         

        if k==13; 

            stringer='991_85_RB'; 

            comp_str(stringer) 

        end 

         

        if k==14; 

            stringer='991_86_RB'; 

            comp_str(stringer) 

        end 

         

        if k==15; 

            stringer='991_87_RB'; 

            comp_str(stringer) 

        end 

         

        if k==16; 

            stringer='991_88_RB'; 

            comp_str(stringer) 

        end 

         

        if k==17; 

            stringer='991_89_RB'; 

            comp_str(stringer) 

        end 

         

        if k==18; 

            stringer='991_90_RB'; 

            comp_str(stringer) 

        end 

         

        if k==19; 

            stringer='991_91_RB'; 

            comp_str(stringer) 

        end 

         

        if k==20; 

            stringer='991_92_RB'; 

            comp_str(stringer) 

        end 

         

        if k==21; 

            stringer='991_170_RB'; 

            comp_str(stringer) 

        end 

         

        if k==22; 

            stringer='991_171_RB'; 

            comp_str(stringer) 

        end 

    end 

end 

  

  

  

  

function comp_str(stringer) 

global colormatrix k coloric 

coloric=freqColor(stringer); 

colormatrix(1:26,k)=coloric; 

return 
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Appendix L 

Collection of Sig_bars (Frequency finder) results 

function coloric=freqColor(stringer) 

freqband=(0:0.78125:20)'; 

coloric=zeros(26,1); 

  

uniqFreqs=sig_bars(stringer, 0); 

[m,~]=size(uniqFreqs); 

for k=1:m 

    for p=1:length(freqband) 

        if uniqFreqs(k,1)==freqband(p) 

            coloric(p)=uniqFreqs(k,2); 

        end 

    end 

end 
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Appendix M 

Publically available functions used as dependencies 

function Result = count(data,condition)  

% COUNT (A,B)  

% Counts the number of elements in A that match the criteria specified in B.  

% Example: 

% Data = [1 2 3 4 3 2 7 6 9 1 1 2 5 9 9];%  

% Count(Data,'==9')  

% ans =  3 

% Richard Medlock, 2001.  

nElements = length(data); 

IndexIDs = 1:nElements; 

Result = eval(['data' condition]); 

Result = IndexIDs(Result); 

Result = length(Result); 

 

function v_row = vec2row(v) 

% Force a vector to be a row vector 

if(size(v,1) > max(1,size(v,2))) 

    v_row = v'; 

else 

    v_row = v; 

end 

 

function z = round2(x,y) 

%ROUND2 rounds number to nearest multiple of arbitrary precision. 

%   Z = ROUND2(X,Y) rounds X to nearest multiple of Y. 

% 

%% defensive programming 

error(nargchk(2,2,nargin)) 

error(nargoutchk(0,1,nargout)) 

if numel(y)>1 

  error('Y must be scalar') 

end 

  

z = round(x/y)*y;  
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Appendix N 

Flow Chart for Programs 

1. Cross-Bicoherence with Surrogate Data Threshold 

 

2. Organization Index Algorithm for Datasets In a Group, 

 

Data Input and 
Splitting 

main_call.m 

Cross-Bicoherence 
with Surrogate 

Threshold 
kin_xbi_general_Bicthres_Optimized.m 

Cross-Bispectrum 

bispecdx_samp.m  

Cross-Bicoherence 

bicoherx_noplot_samp.m 

Surrogate Loop 

surr_gen.m 

Generate 
Surrogates 

generate_surrogate.m 

User-defined Frequency 
Input 

master_looper.m 

Dataset Name Lists for 
Looping 

init_looper.m 

Organization Index 
Algorithm 

sig_Freq_Chan.m 
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3. Time-Frequency Analysis 

  

Collection of All Time-
Frequency Analysis for 

Plotting 

freqcolorMASTER.m 

Dataset Name Lists 
for Looping 

freqLOOPERband.m 

Organization of unique frequencies 
and interaction counts 

freqColor.m 

Unique frequencies output 
and interaction counts 

sig_bars.m 
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